
Circular Motion Formula Sheet:

	Centripetal Acceleration:
	$A_c = \frac{v^2}{r} \qquad A_c = \frac{4\pi^2 r}{T^2}$
A	Note: A _c always point toward the center of the circle.
	Revolving Speed:
	$v = \frac{2\pi r}{T}$ $c = 2\pi r$
	Frequency:
	$f = \frac{1}{T}$ $f = \frac{\# of Cycles}{time}$
	The frequency represents the number of cycles that occur in 1 second.
	Period:
	$T = \frac{1}{f}$ $T = \frac{time}{\# of cycles}$
	The period is the time it takes to complete 1 cycle.
$\left \left\langle F_{c} \right\rangle \right $	Centripetal Force:
	$\boldsymbol{F_c} = \frac{mv^2}{r} \qquad \boldsymbol{F_c} = mA_c$
	Note: F_c always point toward the center of the circle.
	Tension Force – Horizontal Circles: (when v is high)
< T Y	$T \approx F_c = \frac{mv^2}{r}$
	Horizontal Circle – Tetherball: (when v is low)
Ty	$T_y = mg$ $T_x \approx F_c = \frac{mv^2}{r}$
Tx mg v	$\boldsymbol{T} = \sqrt{T_x^2 + T_y^2} \qquad \boldsymbol{\theta} = \tan^{-1}\left(\frac{T_y}{T_x}\right)$
	$T_x = T\cos\theta$ $T_y = T\sin\theta$

www.Video-Tutor.net

Banked Turn:

$$F_g = mg\sin\theta$$
 $F_N = \frac{mg}{\cos\theta}$

Speed and Angle Needed to Avoid Sliding Up or Down: (No Friction)

$$\boldsymbol{v} = \sqrt{rg \tan \theta} \qquad \boldsymbol{\theta} = tan^{-1} \left(\frac{v^2}{rg} \right)$$

Maximum Speed Needed to Avoid Sliding Up: (With Friction)

$$\boldsymbol{v} = \sqrt{\frac{rg(\sin\theta + u_s\cos\theta)}{\cos\theta - u_s\sin\theta}}$$

Minimum Speed Needed to Avoid Sliding Down: (With Friction)

$$\boldsymbol{v} = \sqrt{\frac{rg(\sin\theta - u_s\cos\theta)}{\cos\theta + u_s\sin\theta}}$$

Non-Uniform Circular Motion:

$$\boldsymbol{A_c} = \frac{v^2}{r} \qquad \boldsymbol{\theta} = tan^{-1} \left(\frac{A_c}{a_{tan}} \right)$$

Tangential Acceleration:

a_{tan}

Sun

 F_N

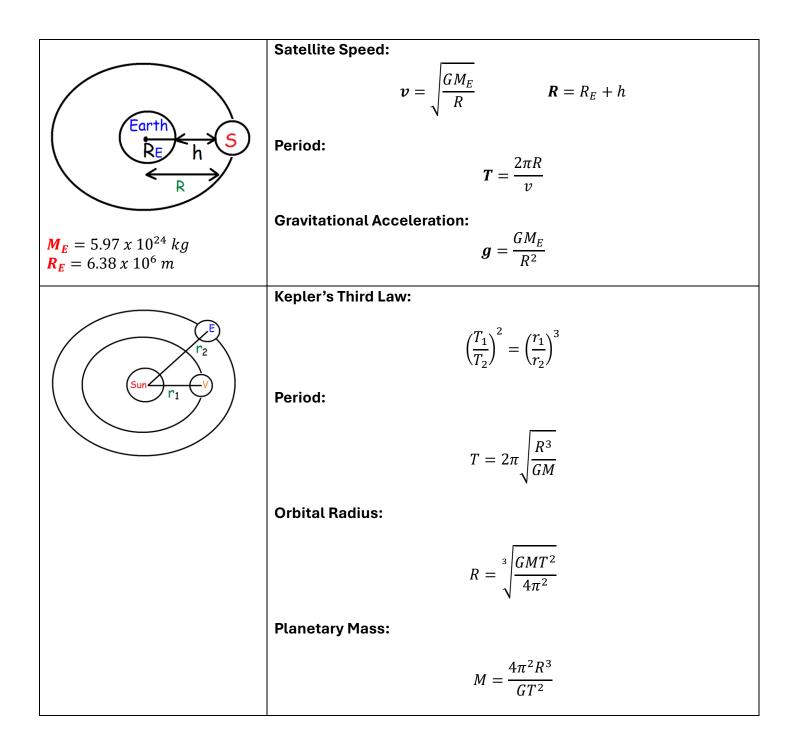
= N

θ

mq

Fq

$$a_{tan} = \frac{v_F - v_0}{t}$$


Net Acceleration:

$$\boldsymbol{a} = \sqrt{a_{tan}^2 + A_c^2}$$

Gravitational Force of Attraction:

$$\boldsymbol{F} = \frac{GM_1M_2}{R^2}$$

Universal Gravitation Constant: $G = 6.67 \times 10^{-11} N * m^2/kg^2$ Mass of the Sun: $M_S = 1.99 \times 10^{30} kg$ Earth to Sun Distance: $R_{ES} = 1.496 \times 10^{11} m$

www.Video-Tutor.net