Acids and Bases Test

60 Practice Problems

Organic Chemistry Tutor

1. Which of the following is a strong acid?	4. Which of the following is the Bronsted Lowry base in the reaction shown below?
A. NH ₃ B. HC ₂ H ₃ O ₂ C. NaOH D. HCIO ₄ E. HF	$HF_{(aq)} + H_2O_{(I)} \iff H_3O^+_{(aq)} + F^{(aq)}$ A. HF B. H_2O C. F^- D. H_3O^+ E. None of the above
2. The $[H_3O^+]$ concentration is 4.7 x 10^{-3} M. Calculate the pH of the solution.	5. The $[OH^{-}]$ concentration is 3.7 x 10^{-4} M. Calculate the $[H_3O^{+}]$ concentration.
A) 1.46 B) 2.33 C) 3.72 D) 5.21 E) 6.84	A) 4.6 x 10 ⁻⁵ M B) 7.3 x 10 ⁻⁷ M C) 5.4 x 10 ⁻⁹ M D) 2.7 x 10 ⁻¹¹ M E) 6.3 x 10 ⁻² M
3. The pH of the solution is 5.4. What is the pOH of the solution?	6. The pH of the solution is 4.2. Calculate the $[H_3O^+]$ concentration.
A) 4.1 B) 6.5 C) 8.6 D) 9.7 E) 11.9	A) 3.1 x 10 ⁻² M B) 4.6 x 10 ⁻³ M C) 1.8 x 10 ⁻⁴ M D) 6.3 x 10 ⁻⁵ M E) 2.5 x 10 ⁻⁶ M

7. The pH of the solution acidic, basic	ution is 9.5 at 25° C. Is the , or neutral?	10. Which acid is stronger? HF or HCN? (The K_a values for HF and HCN are 7.2 x 10^{-4} and 6.2 x 10^{-10} respectively)
A. Acidic	B. Basic	
C. Neutral	D. None of the above	A. HF is the stronger acid because it has a higher K_{a} value.
		B. HCN is the stronger acid because it has a higher \ensuremath{K}_a value.
		C. HF is the stronger acid because it has a lower $\ensuremath{K_a}$ value.
8. The [OH ⁻] concent Calculate the pH of t	tration is 2.6 x 10 ⁻⁹ M. he solution.	D. HCN is the stronger acid because it has a lower $\ensuremath{K_a}$ value.
		E. None of the above
A) 3.7 B) 5.4 C) 7.6 D) 8.6		
E) 10.5		11. What is the pH of a 0.025 M HCl solution?
		A) 1.6 B) 2.3 C) 2.9
		D) 3.6 E) 4.5
	n of $[H_3O^+]$ is 2.7 x 10^{-4} M in a tion acidic, basic, or neutral?	
A. Acidic C. Neutral	B. Basic D. None of the above	12. Calculate the pH of a 0.75 M HOCl solution. The K_a of HOCl is 3.5 x 10^{-8} .
		A) 2.4 B) 2.8 C) 3.2
		D) 3.8 E) 4.6

13. Which acid is stronger? HCl or HBr?	16. Which of the following substances is not amphoteric?
 A. HCl is the stronger acid because Chlorine has a higher electronegativity value than Bromine. B. HBr is the stronger acid because Bromine has a lower electronegativity value than Chlorine. C. HCl is the stronger acid because the Chloride ion is smaller than the Bromide ion. D. HBr is the stronger acid because the Bromide ion is larger than the Chloride ion. 	A. H_2O B. $H_2PO_4^-$ C. HCO_3^- D. $SO_4^{2^-}$ E. None of the above
E. None of the above.	
14. What is the pH of a 3.0 M NH $_3$ solution. The K_b of NH $_3$ is 1.8 x 10 $^{-5}$. A) 9.25 B) 10.6 C) 11.2 D) 11.9 E) 12.7	17. Which acid is stronger? HClO₃ or HClO₂?
15. What is the pH of a 1.0 M NaF solution. The K_a of HF is 7.2 x 10^{-4} .	18. The pH of a 0.40 M HX solution is 3.5. What is the K_{a} value of HX?
A) 7.92 B) 8.57 C) 9.34 D) 9.96 E) 10.5	A) 4.5 x 10 ⁻⁴ B) 6.1 x 10 ⁻⁵ C) 9.3 x 10 ⁻⁶ D) 2.5 x 10 ⁻⁷ E) 1.4 x 10 ⁻⁹

19. The pH of a 0.25 M weak base solution is 9.75. What is the K_b value of the weak base?	22. Which of the following salts will product a basic solution (pH > 7)?
A) 4.9×10^{-4}	A. NaCl
B) 2.3×10^{-6}	B. NH ₄ Cl
C) 1.27 x 10 ⁻⁸	C. AlCl ₃
D) 7.5×10^{-9}	D. Nal
E) 3.6×10^{-11}	E. NaNO ₂
20. Which base is stronger? NH ₃ or CH ₃ NH ₂ ?	23. Calculate the pH of a 0.50 M NH ₄ Cl solution.
(The K_b value for NH_3 and CH_3NH_2 are 1.8 x 10^{-5} and 4.4 x 10^{-4} respectively)	The K_b for NH_3 is 1.8 x 10^{-5} .
	A) 3.6
	B) 4.8
	C) 5.4
	D) 5.9
	E) 6.4
21. The pK _a values of four acids HA, HB, HC, and	24. Calculate the % dissociation of a 2 M $HC_2H_3O_2$
HD are 4.6, 2.5, 7.3, and 6.4. Which of these acids is the strongest acid?	solution. The K_a for Acetic Acid is 1.8 x 10 ⁻⁵ .
	A) 0.15%
A. HA	B) 0.30%
B. HB	C) 0.75%
C. HC	D) 1.4%
D. HD	E) 2.1%
E. None of the above	

25. The % dissociation of a 0.25 M HX solution is
0.13%. Calculate the K _a value of HX.

28. The auto-ionization constant K_w for water is 2.92 x 10^{-14} at 40° C. What is the pH of water at 40° C?

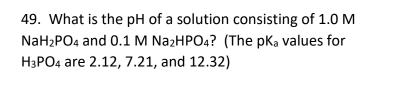
- A) 7.4×10^{-3}
- B) 8.1 x 10⁻⁴
- C) 5.6 x 10⁻⁵
- D) 2.7 x 10⁻⁶
- E) 4.2×10^{-7}

- B) 6.77
- C) 7.00
- D) 7.21
- E) 7.45

- 26. Which acid is stronger? HOCl or HOBr?
- 29. As the temperature increases, K_w for water increases. Based on this information, would you expect the reaction shown below to be endothermic or exothermic?

$$H_2O_{(I)} + H_2O_{(I)} \leftrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$$

- 27. Which of the following statements is not true?
- A. An Arrhenius acid is a substance that generates hydronium ions in solution.
- B. A Bronsted-Lowry acid is a proton donor.
- C. The percent dissociation of an acid decreases with increasing acid concentration.
- D. A Lewis acid is an electron pair donor.
- E. The conjugate base of a strong acid will produce a neutral solution.


- 30. (a) What is the pH of a 0.05 M HCl solution?
- (b) What is the pH of a 4×10^{-7} M HCl solution?

31. Calculate the pH of a 0.035 M NaOH solution.	34. What is the pH of A 0.03 M H_2SO_4 solution? The K_a value for HSO_4^- is 1.2 x 10^{-2} .
A) 4.65 B) 7.24 C) 9.87 D) 11.4 E) 12.5	A) 0.475 B) 0.726 C) 1.22 D) 1.43 E) 1.86
32. Calculate the pH of a 0.0045 M Ba(OH) ₂ solution.	35. Calculate the $[PO_4^{3-}]$ concentration in a 4 M H_3PO_4 solution. The K_a values for H_3PO_4 are 7.5 x 10^{-3} , 6.2 x 10^{-8} , and 4.8 x 10^{-13} .
A) 2.05 B) 4.93 C) 9.15 D) 12.0 E) 13.6	A) 4.5 x 10 ⁻⁴ M B) 6.2 x 10 ⁻⁸ M C) 7.5 x 10 ⁻¹² M D) 3.5 x 10 ⁻¹⁶ M E) 1.8 x 10 ⁻¹⁹ M
33. What is the pH of a 4.0 M H_2SO_4 solution? The K_a for HSO_4^- is 1.2×10^{-2} .	36. What mass of NaF should be dissolved to make a 5.00 L solution with a pH of 8.9? The K_a value for HF is 7.2×10^{-4} .
A) -0.603 B) 0.603 C) 1.25 D) 1.86 E) 2.41	A) 275 g B) 425 g C) 678 g D) 814 g E) 954 g

37. 80 mL of a 0.05 M HCl solution was mixed with 120 mL of a 0.04 M HNO $_3$ solution. What is the pH of the mixture?	40. Which of the following substances will produce a basic solution when mixed with water?
A) 0.748 B) 1.36 C) 1.76 D) 2.05 E) 2.49	A. CO ₂ B. SO ₃ C. CaO D. NaH E. C and D
38. Calculate the pH of a solution composed of 4.00 M HF and 5.00 M HCN. (The K_a values for HF and HCN are 7.2 x 10^{-4} and 6.2 x 10^{-10})	41. What is the pH of a solution consisting of 0.5 M $HC_2H_3O_2$ and 0.75 M $NaC_2H_3O_2$? (The K_a for $HC_2H_3O_2$ is 1.8 x 10^{-5})
A) 0.825 B) 1.27 C) 1.68 D) 1.94 E) 2.31	A) 4.26 B) 4.57 C) 4.74 D) 4.92 E) 5.12
39. Which base is stronger? CN^- or OCl^- ? (The K_a values for HCN and HOCl are 6.2×10^{-10} and 3.5×10^{-8})	42. What is the pH of a solution consisting of 0.400 M NH $_3$ and 0.500 M NH $_4$ Cl? The K $_b$ value for NH $_3$ is 1.8 x 10 $^{-5}$.
	A) 8.99 B) 9.16 C) 9.26 D) 9.35 E) 9.67

2.0L buffered solution	of NaNO ₂ should be HNO_2 solution to create a at a pH of 3.6? The K_a value Assume constant volume)	46. What is the pH of a solution consisting of 0.5 M NaH ₂ PO ₄ and 0.5 M Na ₂ HPO ₄ ? (The pK _a values for H ₃ PO ₄ are 2.12, 7.21, and 12.32)
A) 17 g B) 26 g C) 38 g D) 44 g E) 55 g		A) 2.12 B) 4.67 C) 7.21 D) 9.77 E) 12.32
44. Which of the follo solution?	wing represents a buffer	47. What is the pH of a solution consisting of 0.75 M Na_2HPO_4 and 0.75 M Na_3PO_4 ? (The pK _a values for H_3PO_4 are 2.12, 7.21, and 12.32)
A) 0.5 M HCl and 0.5 MB) 1.0 M NaOH and 1.C) 0.75 M HF and 0.75 D) 0.25 M HNO ₂ and 0.5 E) 0.10 M HCN and 0.5	0 M NH₃ solution 5 M NaF solution 0.25 M NaCN solution	A) 2.12 B) 4.67 C) 7.21 D) 9.77 E) 12.32
PO ₄ ³⁻ . What is the pre	$_{1}^{1}$ S $H_{3}PO_{4}$, $H_{2}PO_{4}^{-}$, HPO_{4}^{2-} , and dominant species at a pH of $_{1}^{2}$ H $_{3}PO_{4}$ are 2.12, 7.21, and	48. What is the pH of a solution consisting of 1.0 M NaH ₂ PO ₄ ? (The pK _a values for H ₃ PO ₄ are 2.12, 7.21, and 12.32)
A. H₃PO₄ C. HPO₄²-	B. H ₂ PO ₄ ⁻ D. PO ₄ ³⁻	A) 2.12 B) 4.67 C) 7.21 D) 9.77 E) 13.23

E) 12.32

51. 20 mL of a 0.75 M NaOH solution is added to 50 mL of a 0.45 M HCl solution. What is the pH of the resulting solution?

- A) 5.21
- B) 6.21
- C) 7.21
- D) 8.21
- E) 9.21

- A) 0.97
- B) 2.5
- C) 6.9
- D) 9.4
- E) 12.8

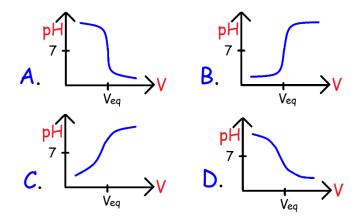
- 50. Which of the following statements is not true?
- A. The pH of the equivalence point of a strong acid strong base titration is 7.
- B. The pH at the equivalence point of a weak acid strong base titration is greater than 7.
- C. The pH at the equivalence point of a weak base strong acid titration is less than 7.
- D. The end point occurs at the same volume as the equivalence point of a titration.
- E. None of the above.

52. A 50 mL solution of 0.5 M HF is titrated with 0.20 M NaOH. What volume of the 0.25 M NaOH solution must be added to reach the equivalence point?

- A. 25 mL
- B. 50 mL
- C. 75 mL
- D. 100 mL
- E. 200 mL

53. A 50 mL solution of 0.5 M HF is titrated with 0.25 M NaOH. What is the pH of the solution before any NaOH is added? (The Ka for HF is 7.2 x 10⁻⁴)

56. A 50 mL solution of 0.5 M HF is titrated with 0.25 M NaOH. What is the pH of the solution after 120 mL of NaOH has been added to it? (The Ka for HF is 7.2×10^{-4})


- A) 1.2
- B) 1.7
- C) 2.3
- D) 2.9
- E) 3.7

- A) 7.65
- B) 9.25
- C) 10.9
- D) 12.5
- E) 13.7

54. A 50 mL solution of 0.5 M HF is titrated with 0.25 M NaOH. What is the pH of the solution after 40 mL of NaOH has been added to it? (The Ka for

- HF is 7.2 x 10⁻⁴)
- A) 2.74
- B) 2.97
- C) 3.14
- D) 3.29
- E) 3.45

57. Which of the following graphs represent a weak base - strong acid titration?

55. A 50 mL solution of 0.5 M HF is titrated with 0.25 M NaOH. What is the pH of the solution after 100 mL of NaOH has been added to it? (The Ka for HF is 7.2×10^{-4})

- A) 4.74
- B) 5.82
- C) 7.00
- D) 8.18
- E) 9.26

58. The table below shows the volume of NaOH that is added to a monoprotic weak acid (HX) solution as well as the pH of the solution. If the equivalence point is reached at a volume of 20 mL, what is the K_a value for HX?

Volume	рН
0 mL	2.39
5 mL	3.41
10 mL	5.52
15 mL	7.46
18 mL	8.92
19 mL	9.31
20 mL	9.76
21 mL	11.9

- A) 2 x 10⁻⁴
- B) 4×10^{-5}
- C) 3×10^{-6}
- D) 7 x 10⁻⁸
- E) 5 x 10⁻⁹

59. A student wishes to prepare a buffer with a pH of 9.00. Which acid should the student choose from?

Acid	Ka
HF	7.2 x 10 ⁻⁴
HOCI	3.5 x 10 ⁻⁸
HCN	6.2 x 10 ⁻¹⁰
H ₂ CO ₃	4.3 x 10 ⁻⁷
HC ₂ H ₃ O ₂	1.8 x 10 ⁻⁵

- A. HF
- B. HOCI
- C. HCN
- D. H₂CO₃
- E. HC₂H₃O₂

60. Bromthymol blue is an indicator with a K_a value of 1 x 10^{-7} . The acidic form (HIn) is yellow and the basic form (In⁻) is blue. For a weak base – strong acid titration, at what pH will the first color change be visible?

- A. pH = 5
- B. pH = 6
- C. pH = 7
- D. pH = 8
- E. pH = 9

Answers:

- 1. D
- 2. B
- 3. C
- 4. B
- 5. D
- 6. D
- 7. B
- 8. B
- -
- 9. A
- 10. A
- 11. A
- 12. D
- 13. D
- 14. D
- 15. B
- 16. D
- 17. HClO₃
- 18. D
- 19. C
- $20. \ CH_3NH_2$
- 21. B
- 22. D
- 23. B
- 24. B
- 25. E
- 26. HOCI
- 27. D
- 28. B
- 29. Endothermic
- 30a. 1.3
- 30b. 6.37
- 31. E
- 32. D
- 33. A
- 34. D
- 35. E
- 36. E
- 37. B
- 38. B
- 39. CN⁻
- 40. E
- 41. D
- 42. B

- 43. E
- 44. C
- 45. C
- 46. C
- 47. E
- 48. B
- 49. B
- 50. D
- 51. A
- 52. D
- 53. B
- 54. B
- 55. D
- 56. D
- 57. D
- 58. C
- 59. C
- 60. D